On the mutual embeddability of (2k, k, k − 1) and (2k − 1, k, k) quasi-residual designs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the coexistence of conference matrices and near resolvable 2-(2k+1, k, k-1) designs

We show that a near resolvable 2-(2k + 1, k, k − 1) design exists if and only if a conference matrix of order 2k+2 does. A known result on conference matrices then allows us to conclude that a near resolvable 2-(2k + 1, k, k − 1) design with even k can only exist if 2k + 1 is the sum of two squares. In particular, neither a near resolvable 2-(21, 10, 9) design nor a near resolvable 2-(33, 16, 1...

متن کامل

Optimal Consecutive-k-out-of-(2k+1): G Cycle

We present a complete proof for the invariant optimal assignment for consecutive-k-outof-(2k+1):G cycle, which was proposed by Zuo and Kao in 1990 with an incomplete proof, pointed out recently by Jalali, Hawkes, Cui and Hwang.

متن کامل

The (2k-1)-connected multigraphs with at most k-1 disjoint cycles

In 1963, Corrádi and Hajnal proved that for all k≥1 and n≥3k, every (simple) graph G on n vertices with minimum degree δ(G)≥2k contains k disjoint cycles. The same year, Dirac described the 3-connected multigraphs not containing two disjoint cycles and asked the more general question: Which (2k− 1)-connected multigraphs do not contain k disjoint cycles? Recently, the authors characterized the s...

متن کامل

On the family of Diophantine triples { k − 1 , k + 1 , 16 k 3 − 4 k }

It is proven that if k ≥ 2 is an integer and d is a positive integer such that the product of any two distinct elements of the set {k − 1, k + 1, 16k − 4k, d} increased by 1 is a perfect square, then d = 4k or d = 64k−48k+8k. Together with a recent result of Fujita, this shows that all Diophantine quadruples of the form {k − 1, k + 1, c, d} are regular.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1980

ISSN: 0097-3165

DOI: 10.1016/0097-3165(80)90027-8